If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1.5x^2+x-8.2=0
a = 1.5; b = 1; c = -8.2;
Δ = b2-4ac
Δ = 12-4·1.5·(-8.2)
Δ = 50.2
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{50.2}}{2*1.5}=\frac{-1-\sqrt{50.2}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{50.2}}{2*1.5}=\frac{-1+\sqrt{50.2}}{3} $
| 2.5+0.5=0.4p | | 3x-54=3x-54 | | 6y-13=15 | | 8n+10=2n+22 | | y-5+2y=5 | | 2(5-3x)=10-10(x-2) | | 6x+-1=-9x | | 9-(5-8x)=4x+5 | | 2x+4=1(2x+4 | | -56–-2t=-50 | | 10m+34=7 | | 2(6x-31)=19x-36 | | 52-8x+8=2x+4 | | 1/3/1/2=1/x | | 12-3x=6x-9 | | 1/150/2=1/200/x | | 3^(2x)-7*3^x-18=0 | | 54/x=4/8 | | 18x+30=12x+-6 | | 34-12x=24x-36 | | 12x-4=(30)+(10x-10) | | 1/3u+3/4=1/6 | | f(4)=3(-1)+2 | | 9b+5=2b-16 | | 13u+3/4=1/6 | | m1=48=m3 | | 5x-10=21 | | 129–-12h=153 | | 3z+24=6z | | 30+6y=18 | | 1/7/x=1/2/49 | | 7x+30=-21 |